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Abstract. This paper takes a classical machine learning approach to
the task of dialogue act segmentation. A thorough empirical evaluation of
features, both used in other studies as well as new ones, is performed. An
explorative study to the effectiveness of different classification methods
is done by looking at 29 different classifiers implemented in WEKA.
The output of the developed classifier is examined closely and points of
possible improvement are given.

1 Introduction

Current research in the AMIDA project is focussed on a deeper understanding
of meeting discourse semantics. An important first step towards this goal is the
structuring of utterances into meaningful parts, like sentences or Dialogue Acts.
A Dialogue Act is a sequence of subsequent words from a single speaker that form
a single statement, an intention or an expression. Segmenting spoken or written
text into dialogue acts contributes to a better understanding of the utterances;
is the speaker for example asking something, or is he conveying a meaning? A
lot of work on DA and linguistic segmentation and DA classification (or tagging)
has already been done [1], [2], [3], [4] and [5]. However, this still is not a closed
topic and many techniques still need to be explored.

The following is a Dialogue Act annotated example taken from the AMI
corpus, using its 15 tag tagset:

You know. (Elicit-Assessment) Yep. (Assess) Mm-hmm. (Backchannel)
I think one factor would be production cost. (Inform)

This is an example of a segmentend and tagged series of words. This paper
looks at the task of segmentation alone, where the input is the sequence of words
(without interpunction or capitalization), and the goal is to tag each word as
either a segment Boundary or a Non-Boundary:

you/B know/NB yep /B mm-hmm /B i/B think /NB one/NB factor /NB
would /NB be /NB production/NB cost /NB

The Dialogue Acts as used within the AMI project are defined to be uttered
by a single speaker only (so no single dialogue act can span multiple speakers).
For this reason, the input for the classifier is the sequence of words sequentially
uttered per speaker.



This paper looks into stand-alone segmentation using a two-class classifica-
tion approach. It can also be seen as a sequence-based machine learning problem
in which case techniques like Hidden Markov Models, Conditional Random Fields
(CRFs) or Memory-Based Tagging can be used. This approach is explored in [6]
and [7] and will not be used here.

For every machine learning task there are four major aspects that can and
should be looked into. These are: features, classification method, classifier pa-
rameters and data. This article will focus on the evaluation of features using a
Bayesian Network classifier, and takes a quick look at other classification meth-
ods.

For this project the AMI Corpus is used, which will be described first. Next,
a list of features that have been derived from the data is defined. All these fea-
tures need to be evaluated to see how useful they are. Simply using all available
information to begin training classifiers is not efficient. The amount of training
data needed for the classifier to automatically learn that some features, for ex-
ample, contain little or no information can become extremely large. Therefore
a thorough feature selection is conducted, which is described in Section 4. To
explore the influence of different classification techniques, section 5 describes ex-
periments with 29 different ones. A thorough evaluation of the final results (for
Bayesian Networks) will then be done which gives insight in the types of errors
made by our classifier.

2 The AMI Corpus

All the data that is used in this project comes from the AMI Corpus [8]. The
largest part of the corpus (72 hours in total) are scenario-based meetings which
are covered by 35 series, totalling 138 meetings. The following split into training,-
test,- and evaluation sets has been made:

Training set: ES2002, ES2005-2010, ES2012, ES2013, ES2015, ES2016, IS1000-
1007, T'S3005, TS3008-3012 (98 meetings)

Evaluation set: ES2003, ES2011, IS1008, TS3004, TS3006 (20 meetings)

Development set: ES2004, ES2014, 1S1009, TS3003, TS3007 (20 meetings)

The training set contains 465.478 words, the evaluation set 106.742 words
and the development set contains 99.372 words . For all the words, begin- and
endtime information is available as well as the person who uttered the word
and his/her role in the meeting (either Project Manager, Industrial Designer,
Marketing Expert or User Interface designer). Also the wave signals of all the
meetings and for every participant are available, which will be used for prosodic
feature extraction. All annotations are hand transcribed.

3 For this research, the evaluation-, and development sets are switched around from
the standard AMI configuration.



3 Definition of Features

The input for the classifier is a feature-vector for each word in the corpus. Fea-
tures are derived from the word itself, timing and prosodic information. The
types of features that have been used in other work on DA segmentation will be
used, as well as some features that are introduced here.

Next follows a list of all the features used in this project. The number (#x)
is used throughout the article to identify the feature.

3.1 Time related features
Features derived from the start- and end times of the words in the corpus:

— #1. Pause between the words: the duration between the starttime of
the current word and the endtime of the last word by the same speaker.

— #2. Pause nominal: a ‘boolean feature’, pause or no pause. Note that due
to forced time alignment in the AMI corpus, all small pauses between words
have been truncated to zero.

— #3. Duration of word: duration of the word.

— #4. Mean duration of word: the average duration of this word in the
whole training set.

— #5. Relative duration of word: the duration of the word minus the mean
duration of the word.

3.2 Word related features
Features derived from the words themselves.

— #6. Current word: the word itself. Because most classifiers cannot handle
String input, the feature is converted into a nominal feature for each word in
the corpus (e.g. ‘current_word_hello’ {Yes,No}). Only words that occur more
than 100 times are considered (452 in total)?.

— #7. Next word: the next word from the same speaker (with frequency of
100 or more).

— #8. Previous word: the previous word from the same speaker (with fre-
quency of 100 or more).

— #9. Part-of-Speech Current word: A part of speech tag given to the
current word. The word is tagged by the Stanford Part-Of-Speech Tagger®,
where the input to the tagger is the current word and the surrounding 6
words. This window of 7 words is also used in e.g. [9]. The tagger uses the
Penn Treebank English tagset, which is a commonly used tagset consisting
of 37 tags [10].

4 Experiments have shown that less frequently occuring words contain no information
on segment boundaries.
® http:/ /nlp.stanford.edu/software/tagger.shtml



— #10. PoS Previous word: the Part-Of-Speech tag for the word preceding
the current word (Penn Treebank Tagset).

— #11. PoS Next word: the Part-Of-Speech tag for the word following the
current word (Penn Treebank Tagset).

— #12. #13. #14. PoS Reduced Tagset: intuitively, a 37-tag tagset is too
fine grained for the DA segmentation task. The Penn Treebank set has been
mapped to a 6 tag set: Verbs, Nouns, Adjectives, Adverbs, WH-words and
Other. Feature #12 is the current PoS tag using this reduced tagset, feature
#13 the PoS of the previous word and feature #14 that of the next word.

— #15. #16. #17. PoS with keywords: these three features, for the current
word, previous word and next word respectively, use the reduced tagset but
extended with certain important keywords. This approach is analogous to
[3], where some words get their own tag. Preliminary experiments show that
the most important cue words for a segment border are: ‘yeah’, ‘so’, ‘okay’,
‘but’ and ‘and’, thus getting their own tag.

— #18. Word repeat: 1 if the current word is the same as the next word, 0
otherwise.

— #19. Word repeat 2: 1 if the current word is the same as the previous
word, 0 otherwise.

3.3 Prosodic features

Features derived from the word pitch and energy information®. All values have
been normalized to the microphones.

— #20. #21. #22. Pitch Features: the minimum-, maximum- and mean
pitch respectively.

— F#23. #24. #25. Energy Features: the minimum,- maximum- and mean
energy respectively.

— #26. Speechflow Past: this feature defines a ‘talking speed’ over the cur-
rent word Wy and the words W_,, W_o and W_3. The feature is the total
time of those 4 words (including pauses inbetween them), divided by the
total number of syllables in the words.

— #27. Speechflow Future: the talking speed over the future 3 words: the
time of words Wy — W3 divided by the total number of syllables in those
words.

— #28. Speechflow Change: substract feature #27 from feature #26.

3.4 Online features

The following four features must be calculated during the classification because
their value depends on previously assigned borders.

— #29. Number of words in previous segment: self-explanatory.

5 Thanks to Gabriel Murray for supplying the scripts and to Sebastian Germesin for
the word-alignment



— #30. Distance of words to the last segment: a counter that keeps track
how far this word is away from the last assigned border.

— #31. Relative position of word inside segment: analogous to feature
#30 only that the counter counts blocks of 5 words, see [11].

— #32. Timeintervall of current word to last segment: the total time
between the end of the last segment border and the beginning of the current
word.

4 Feature Selection Results

The goal of the feature selection phase is to see what the influence of individual
features is, as well as to see how certain combinations of features influence the
classifier performance. There are 32 different features, three of which (the word
features) are expanded to one feature for every frequently occuring word. This
makes the total feature vector 1309-dimensional. To find an optimal feature
subset within this space is computationally impossible (2!3%9 possibilities), so the
first step is to filter out those features that contain little information. To do this,
the InfoGain Attribute Evaluator from WEKA is used. This method calculates
the probability of an instance being a segment border (prior probability) and
compares this to the probability of a segment border given that a feature has a
certain value. The higher the change in probability, the more useful this feature
is. The results of the InfoGain ranking top 50 can be seen in Table 1.

Table 1. Result of the Information Gain ranking algorithm on all features.

[Rank[Feature [Infogain|[Rank] Feature[Infogain|
1 4L 0.2462 16]  #8 (yeah) 0.0260
2 #2 0.2399 17 #11 0.0213
3 #4 0.2191 18 #27  0.0190
4 |#5 0.1373 19 #6 (s0)|  0.0152
5 #26 0.1311 20 #30[ 0.0152
6 |#32 0.1066 21| #6 (okay)| 0.0139
7 |#15 0.0818 22| #8 (okay) 0.0114
8 #16 0.0664 23 #25| 0.0107
9 #9 0.0517 24 #17  0.0106
10 #10 0.0490 25 #6 (but) 0.0102
11 |#28 0.0461 26 #6 (and)|  0.0088
12 #13 0.0424 27 #12|  0.0086
13 |#6 (yeah)[0.0347 28 #21)  0.0084
14 #29 0.0323 29|#6 (mm-hmm) 0.0084
15 #23 0.0308 30 #6 (mm)| 0.0078

In the second step of the feature selection phase, a BayesNet classifier has
been repeatedly trained and evaluated with different feature subsets, taken from
the best 30 features (Table 1). Because an exhaustive subset evaluation is still



impossible to do, we manually chose feature subsets and expanded them untill
all options that are likely to improve the results have been tried. A total of 528
experiments have been done, and the resulting best performing subset is seen in
Table 2.

Table 2. Best Performing Feature Subset for Bayesian Network Classifier.

IID ‘Feature ‘

#1 [Pause between the words

#2 |Pause nominal

#4 |Mean duration of word

#6 |Current word (mm-hmm, but, yeah, so, okay, and)
#8 |Previous word (okay)

#10[PoS Previous word

#11|Pos Next word

#16|Pos Previous word (with keywords)
#23|Minimum Energy

#25Mean Energy

#28|Speechflow change

#32|Timeintervall of current word to last segment

This feature set achieved an F-measure of 0.75 with 0.79 precision and
0.72 recall. There are a few interesting things about this set. First, the pause
and the nominal pause (#1 and #2) seem to contribute both, even though they
are obviously correlated. Leaving one of them out lowers the performance of
the classifier. Second, the Part-of-Speech tags of the previous and next word
(#10 and #11) are selected, but not that of the current word (this doesn’t
seem intuitive). Third, in contrast to the literature, the words of the Part-of-
Speech tagset enhanced with keywords (#15, #16 and #17) are better added
as individual features, instead of incorporating it in a PoS-feature like in [3].

5 Classifier Experiments

Bayesian Networks are just one of many possible techniques for building a ma-
chine classifier. To get a quick overview of how other classifiers handle the task of
DA segmentation, a number of different classifiers have been trained and tested.
An exhaustive search in the feature - classifier - parameter space is extremely
time consuming, therefore we save time by a) using default classifier parameters
and b) use only 50.000 training instances”. Note that different classifiers may
be affected differently by size of training set, paramter optimization and fea-
ture set, so optimally these should all be varied [12]. In these experiments, the
97 best performing feature sets® have been fed to the different classifiers. The

" Experiments showed that after 50.000 instances, no significant improvements in re-
sults could be noticed with a Bayesian Network classifier
8 All scoring better than pause feature alone.



results are reported for the best feature vector (F-measure) for every classifier
(see Table 3). The names of the classifiers in Table 3 refer to the names of the
WEKA classes that implement them (except for the MaxEntStanford classifier,
a Maximum Entropy Classifier developed by the Stanford NLP Group.

Table 3. Classifier experiment results.

Classiﬁer[F-measure“ ClassifierF-measure

LMT 0.76 DecisionTable 0.73
J48 0.75 VotedPerceptron 0.73
NBTree 0.75 SimpleLogistic 0.73
ADTree 0.75 SMO (Poly) 0.73
SimpleCart 0.75 SMO (RBF) 0.73
PART 0.75 Ridor 0.73
BayesNet 0.75 RBFNetwork 0.73
REPTree 0.75 NNge 0.70
RandomForest 0.75 OneR 0.69
MultilayerPerceptron 0.75 ConjunctiveRule 0.68
BFTree 0.74 NaiveBayes 0.68
MaxEntStanford 0.74 RandomTree 0.67
1Bk 0.74 vii 0.65
Logistic 0.73 HyperPipes 0.27

JRip 0.73

Many of these classifers perform in line with the Bayesian Network classifier,
where the variance in results is much larger when changing the feature set.
This shows that changing the classification method is far less significant than
optimizing features.

6 Evaluation

In order to know how good the results are, they are compared to a baseline and
a theorized top score, both based on the intrinsic properties of the task. The
baseline is defined based on a least-effort method. The ‘maximum achievable
score’ is based on the intrinsic vagueness of the dialogue act problem by looking
at the inter-annotator confusion analysis of dialogue act segmentation in [1].
The least effort, or baseline classifier consists of a single rule: if there is a pause
between two words, the second word is the start of a new dialogue act. See Table
4 for a summary of the results.

To answer the question how good a 0.05 improvement on the baseline is, we
must hypothesize a roof for the results. The best score we can expect from an
automatic dialogue act segmenter depends on how “vague” a segment boundary
is defined, or what the intrinsic difficulty of the task is. As a best possible score
we take the results from [1] on inter-annotator confusion analysis. Table 5, taken
from [1] shows the recall/precision values between two different annotators if one



Table 4. Result overview for evaluation- and test set, including baseline.

Set Instances|Acc.|Prec.|Recall] F [NIST
Development| 99372 [0.93]/0.79 | 0.72 |0.75| 0.47
Evaluation 106742 10.92(0.79 | 0.72 |0.76| 0.47
Baseline 106742 10.92({0.97 | 0.55 [0.70| 0.47

is taken as the gold-standard and the other as the “classifier output”. The table
is based on the IS1003d meeting which has been annotated by four different
annotators.

Table 5. Recall/Precision and average F-score values for inter annotator segmentation.

dha |dha-cjmar|s95 |s95-c|vka |Avg. F-score

dha 0.91 ]0.93|0.84/0.92 |0.91 0.86
dha-c|0.93|- 0.94(0.84(0.92 0.91 0.87
mar [0.77|0.79 |- 0.76]0.80 |0.86 0.85

s95 ]0.81|0.83 |0.89]- ]0.85 |0.87 0.82
$95-c [0.89|0.91 ]0.94/0.85|- 0.92 0.87
vka ]0.72|0.74 ]0.83|0.72/0.75 |- 0.82

Total average F-score: 0.85

The last column for each row contains the average F-measure for the anno-
tator on that row with all the other annotators. The total average F-score for
all annotator pairs is 0.85. This can be seen as a maximum achievable score.
Note that the argument that a classifier is capable of learning through noise,
and thus performs better may be true, but this is not reflected in F-score. Most
importantly, this puts our results of around 0.76 into perspective: on a scale from
0.70 to 0.85, we’re achieving only one third of what is possible!

6.1 Detailed error analysis

To pinpoint where we can improve the performance of our classifier, we take
a look at the output it produces. Because the definition of a Dialogue Act is
not perfectly defined, some of the output may mismatch that of the gold stan-
dard, but could still be considered correct. Table 6 lists the words that are most
frequently incorrectly classified.

It is interesting to see that the words ‘yeah’, ‘so’, ‘okay’, ‘but’ and ‘and’ that
have previously been proved to be useful features, now all occur in the top 6 of
most frequently occuring errors. They all have word-error percentages between
20% and 35% and the six words make up 42% of the total amount of errors made
by the classifier. The 20 words in Table 6 cover 70% of the total errors, while the
other 30% is covered by 507 other words. This shows that a large inprovement
can be gained by looking at a small number of words. Therefore, we take a
closer look at the 6 words that cause 42% of the errors. We distinguish between



Table 6. Word error distribution (evaluation set).

error percent age|
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occurence
total errors

true positives
true negatives

word
and 2160(761|35% (531 (24%)|230
yeah 3437(675|20% (629 (19%)| 46

11%)| 719 | 680
1%) |2640| 122
1

(

(
i 2471(552|22% | 82 (3%) [470 (19%)| 472 |1447
s0 1667(470|28%|395 (24%)| 75 (4%) |1003| 194
okay  |1303[410|31%|393 (30%)| 17 (1%) | 823 | 70
but 975 |322|33% |274 (28%)| 48 (5%) | 603 | 50
um 1205(290|24%| 126 (10%)|164 (14%) | 375 | 540
uh 2980(268| 9% | 42 (1%) | 226 (8%) | 333 |2379
you  |2359(219| 9% | 18 (0%) | 201 (9%) | 118 |2022
we 1677(196|12%| 9 (1%) |187 (11%)| 72 |1409

it’s 1076|177|16%| 29 (2%) |148 (14%)| 166 | 733
that's | 727 [163|22%| 42 (5%) |121 (17%)| 112 | 452
the  |4753|145| 3% | 13 (0%) | 132 (3%) | 121 |4487

or 681 |137|20% | 17 (2%) [120 (18%)| 57 | 487
it 2157(117| 5% | 1 (0%) | 116 (5%) | 85 |1955
if 753 [10914%| 7 (0%) |102 (14%)| 56 | 588

well | 509 | 96 |19%] 51 (10%) | 45 (9%) | 195 | 218
because| 270 | 95 |35%| 34 (12%) | 61 (23%) | 109 | 66
that  |1486] 91 | 6% | 5 (0%) | 86 (6%) | 46 |1349
just | 819 |88 |11%| 6 (1%) |82 (10%) | 55 | 676

errors that are not actually harmful, like not splitting up an “um - yeah” into
two segments. A real error would be to not make the split in “...we’ll discuess
that - and then I just wanna mention some new project requirements...”. For
the following 6 words, the results of 100 false positive, and 100 false negative
error cases were closely examined. For every word, some basic cases or rules are
identified that could help in improving the segmenter.

The ‘and’ case: For the false positives, 29% of the errors were not considered
harmful. All non-harmful cases can be described as belonging to the following
class:

— Disfluency class: cases were the word is preceded by a disfluency (“um”,
false start, etc...). The classifier and gold standard segmentation often not
agree on whether the disfluency is part of the previous or the next segment
(or is a segment in itself). For example: “...I mean fr - and from the point
of view ...”, where the classifier seperates the false start, but the annotator
did not.

The remaining real errors largely corresponded to one of the following two classes:
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— ‘And such and so’ class: cases of “... and such”, “... and so on”, “... and
stuff”. In these cases, there probably should not be a boundary.

— ‘Fruit and Vegetables’ class: most of the false positives are related to
splitting a summation of items into two segments, like: “[research] and [de-
velopment]”, “[my brother] and [my dad]”, “[up] and [down]”. But some of
the examples are a bit more complex, like: “[the actual led] and [maybe to

a certain extent the joystick]”.

The ‘yeah’ case: Looking at the examples for ‘yeah’ is unfortunately quite
uninformative most of the times.

The ‘I’ case: Approximately one third of the FP’s can be seen as non-harmful
and can be categorized in the same “disfluency class” as for the ‘and’ cases. For
the real errors, about 55% of the errors belong to this class:

— “Yeah I class’: an ‘I’ following a ‘yeah’ or sometimes an ‘okay’, as in “...yeah
I think so”. There is no pause between the ‘yeah’ and the ‘i’, so the ‘yeah’
is not just a short backchannel, but part of the statement. In this case the
‘I’ should not be tagged as boundary.

The ‘so’ case: The FN’s can sometimes be considered non-harmful because
they are close to “um’s”. For the FP’s, 47% of the errors can be seen as non-
harmful and can be attributed to the “disfluency class”. For the actual errors,
there are a few cases that could be handled differently:

— non-Consequently class: The word ‘so’ is often used as a conjunction,
like: “...so a small speaker you mean...”. These cases are likely DA segment
boundary candidates. But the word ‘so’ can also be used in other cases like
“...80 far so good...”, “...i think so...”, or “...that’s so great...”. In these cases
it is far less likely to be a segment boundary.

The ‘okay’ case: Half of the FP’s can be subcategorized in the following two
classes:

— Double-positive class: 24% of the FP’s are examples where the classifier
splits a double-backchannel or “positive expression” into two, like: “...yeah
okay...”, “...right okay...” or “...okay okay...”.

— Uhm-okay class: 18% of the false positives are cases where a sort of ‘uhm’
preceding an ‘okay’ is split in two; for example: “...oh okay...’; “...uh okay

S or ““...hmm okay”. These are considered non-harmful errors.

The ‘but’ case: For the FN’s, 9 out of the 48 errors can not really be considered
harmful, because the ‘but’ has no real meaning. It used as a filler/disfluency,
where sometimes it is considered as a seperate segment, and sometimes it is part
of the previous or next segment. For the FP’s, 27% can be seen as “disfluency
class”, while 21% can be categorized as follows:
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— Yeah but class: For example a false split between “...yeah - but...”, “...no
- but...” or “...okay - but...”. In these cases there should generally be no
boundary.

The detailed analysis of these error cases could be used to create a rule-based
pre- or post processing system to aid the automatic segmentation methods. A lof
of errors are produced by disfluency, so a preprocessing step to remove disfluency
could also help increase performance.

7 Conclusion

The experiments done on dialogue act segmentation on the AMI corpus show
that reasonable results can be achieved using a variety of word related, time
related, online-, and prosodic features. More importantly it is shown that there
are still quite a lot of things to be done that can possibly increase performance.
The classifier experiments in Section 5 indicate that a lot of different classifiers
already perform well with default settings. Solving the search problem of a com-
bined optimization of feature subsets and classifier parameters could possible
lead to a significant improvement in results, as [12] points out.

Further improvements could be achieved by optimizing the feature represen-
tation. The Part-of-Speech feature, for example, has proven to be useful, even
though the tag-set has not been changed for the specific task of segmentation.
A detailed analysis of the Part-of-Speech of words near segment boundary could
lead to a better tag-set, and could possibly improve the overall classifier perfor-
mance. The same goes for all the numeric features like pause, “speechflow” and
the prosodic features, where optimal binning configurations can be found using
simple brute-force techniques, such as in [13].

The detailed analysis of frequently occuring errors in Section 6.1 could pro-
vide a basis for a rule-based pre-processing of the data. Because the six words
mentioned in this section make up such a large amount of the errors produced by
the classifier, more attention should definitely be put into handling these cases.
Since the words occur so frequently, there is enough data to train classifiers
specifically for these words. In combination with rules covering the identified
error classes, some improvement of the overall results can be expected.

Another important conclusion that can be drawn from the error analysis is
that disfluency in the spontaneous speech in the AMI corpus causes a lot of
gold-standard errors. These errors are not always expected to be very harmful,
but it is worth looking into a way of avoiding them. A preprocessing step to
correct disfluency errors might be very helpful for these types of errors.

Besides the abovementioned points that still need to be addressed, future
work on dialogue act segmentation should include features that look at the in-
teraction between speakers, as well as multimodal features like gaze, gestures
and movement.
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